text-generation-webuiserver.py, line 68, in load_model_wrapper shared.model, shared.tokenizer = load_model(shared.model_name, loader) File “C:SarahOneMetisobwobwwtext-generation-webuimodulesmodels.py”, line 78, in load_model output = load_func_maploader File text-generation-webuimodulesmodels.py”, line 264, in llama cpp load model_file = list(Path(f’{shared.args.model_dir}/{model_name}’).glob(‘ggml.bin’))[0] IndexError: list index out of range
The error message you provided indicates that there is an “IndexError: list index out of range” at line 264 in the “llama cpp load” function in the “models.py” file. This error typically occurs when you try to access an index of a list that does not exist.
Let’s break down the error message and the relevant code to understand the issue better:
1. The error message: “IndexError: list index out of range”
This indicates that you are trying to access an index of a list, but the index you are trying to access is not within the range of the list’s indices.
2. File “text-generation-webuiserver.py”, line 68:
This is where the load_model_wrapper function is called. It seems that the model loading process is being wrapped within this function.
3. File “text-generation-webuimodulesmodels.py”, line 78:
This line corresponds to the load_model function being called within the models.py module.
4. File “text-generation-webuimodulesmodels.py”, line 264:
This is the line that raises the IndexError. The line attempts to load the model file with the name “ggml.bin” from a directory specified by the variable “{shared.args.model_dir}”.
5. The error message continues with: “list index out of range”:
This part of the error message tells us that the list created by the glob function in line 264 is empty, and thus, there is no element at index 0, causing the IndexError.
Possible reasons for this error:
– The model file “ggml.bin” does not exist in the specified directory.
– The specified “{shared.args.model_dir}” directory does not exist.
– There might be a typo in the filename or directory path.
To resolve the issue, you should check the following:
1. Ensure that the model file “ggml.bin” is present in the “{shared.args.model_dir}” directory.
2. Verify that the “{shared.args.model_dir}” directory path is correct and accessible.
3. Double-check for any typos or incorrect naming in the file path.
By addressing these potential issues, you should be able to resolve the “IndexError: list index out of range” error. If you’re still facing issues, you may need to provide more context or code to get further assistance.
I would like to query a model for its parameters and display them in a sidebar of an already made streamlit app.
To query a model for its parameters and display them in a sidebar of a Streamlit app, you can follow these general steps:
1. Load the model: First, load the model you want to query. Depending on the type of model and framework, you may need to use different methods to load the model.
2. Extract the model parameters: Once the model is loaded, extract the parameters you want to display in the sidebar. The specific way to access model parameters will depend on the framework you are using.
3. Create a Streamlit app: If you already have a Streamlit app, make sure you have a sidebar in the app layout where you want to display the model parameters.
4. Display the parameters in the sidebar: Use Streamlit’s sidebar components (e.g., `st.sidebar.text()`, `st.sidebar.write()`, etc.) to display the extracted model parameters.
Here’s a general example of how to display model parameters in the sidebar of a Streamlit app:
“`python
import streamlit as st
import torch # Assuming you are using PyTorch, but you can replace this with your specific framework
# Load the model (assuming it’s a PyTorch model)
def load_model():
# Replace this with your actual model loading code
model = torch.load(“path/to/your/model.pt”)
return model
# Extract model parameters
def get_model_parameters(model):
# Replace this with code to extract the specific parameters you want to display
model_parameters = {
“parameter1”: model.parameter1,
“parameter2”: model.parameter2,
# Add more parameters as needed
}
return model_parameters
# Main function to run the Streamlit app
def main():
# Load the model
model = load_model()
# Get model parameters
model_parameters = get_model_parameters(model)
# Create the Streamlit app layout
st.title(“Your Streamlit App”)
# Display model parameters in the sidebar
st.sidebar.title(“Model Parameters”)
for param_name, param_value in model_parameters.items():
st.sidebar.text(f”{param_name}: {param_value}”)
# Add the rest of your Streamlit app code here
if __name__ == “__main__”:
main()
“`
In this example, we assume you have already set up the main Streamlit app and are using a PyTorch model. Adjust the code according to your specific model and framework. The key is to load the model, extract the parameters you want to display, and then use Streamlit’s sidebar components to show them in the app.
in here: import streamlit as st
from orac import generate_text # Import the generate_text function from orca.py
def main():
st.title(“Story Writing Assistant”)
# Input text area for the user to provide input
input_text = st.text_area(“Input:”, value=”Once upon a time, in a faraway land…”)
# Generate button to trigger text generation
if st.button(“Generate Story”):
generated_story = generate_text(input_text) # Use the generate_text function
st.markdown(f”### Generated Story:nn{generated_story}”)
if __name__ == “__main__”:
main()
To add a sidebar displaying the model parameters to the existing Streamlit app, you can modify the code as follows:
“`python
import streamlit as st
from orac import generate_text # Import the generate_text function from orca.py
# Function to load the model and extract model parameters
def load_model_and_get_parameters():
# Replace the following code with your actual model loading and parameter extraction code
model = None # Load your model here
model_parameters = None # Extract model parameters here
return model, model_parameters
def main():
st.title(“Story Writing Assistant”)
# Load the model and get model parameters
model, model_parameters = load_model_and_get_parameters()
# Sidebar to display model parameters
st.sidebar.title(“Model Parameters”)
for param_name, param_value in model_parameters.items():
st.sidebar.text(f”{param_name}: {param_value}”)
# Input text area for the user to provide input
input_text = st.text_area(“Input:”, value=”Once upon a time, in a faraway land…”)
# Generate button to trigger text generation
if st.button(“Generate Story”):
if model is None:
st.error(“Model not loaded. Please check your model loading function.”)
return
generated_story = generate_text(model, input_text) # Use the generate_text function with the loaded model
st.markdown(f”### Generated Story:nn{generated_story}”)
if __name__ == “__main__”:
main()
“`
In this modified code, we have added the `load_model_and_get_parameters()` function, which is responsible for loading the model and extracting its parameters. You need to replace the `None` values inside the function with your actual model loading and parameter extraction code.
Next, we use the `st.sidebar` to display the model parameters in the app’s sidebar. We iterate through the `model_parameters` dictionary and use `st.sidebar.text()` to display each parameter’s name and value.
Ensure that your `generate_text()` function accepts the loaded model and the input text as input and returns the generated story. Modify the function signature accordingly.
Now, when you run the Streamlit app, you should see the model parameters displayed in the sidebar, and you can use the “Generate Story” button to generate text using the specified model and input.
ttributeError: ‘NoneType’ object has no attribute ‘items’
Traceback:
File “C:UsersSarah.condaenvsamberrlibsite-packagesstreamlitruntimescriptrunnerscript_runner.py”, line 552, in _run_script
exec(code, module.__dict__)
File “C:SarahOnelilithLangchainappt.py”, line 36, in
main()
File “C:SarahOnelilithLangchainappt.py”, line 20, in main
for param_name, param_value in model_parameters.items():
The “AttributeError: ‘NoneType’ object has no attribute ‘items'” error occurs when you try to iterate over the `model_parameters` variable, which is `None`. This error suggests that the `load_model_and_get_parameters()` function is not returning the expected values.
To fix the issue, you need to ensure that the `load_model_and_get_parameters()` function returns the model and the model parameters correctly. Here’s an updated version of the code that handles the error condition:
“`python
import streamlit as st
from orac import generate_text # Import the generate_text function from orca.py
# Function to load the model and extract model parameters
def load_model_and_get_parameters():
# Replace the following code with your actual model loading and parameter extraction code
model = None # Load your model here
model_parameters = None # Extract model parameters here
return model, model_parameters
def main():
st.title(“Story Writing Assistant”)
# Load the model and get model parameters
model, model_parameters = load_model_and_get_parameters()
if model_parameters is None:
st.sidebar.error(“Failed to load model parameters. Please check your model loading and parameter extraction code.”)
return
# Sidebar to display model parameters
st.sidebar.title(“Model Parameters”)
if model_parameters:
for param_name, param_value in model_parameters.items():
st.sidebar.text(f”{param_name}: {param_value}”)
# Input text area for the user to provide input
input_text = st.text_area(“Input:”, value=”Once upon a time, in a faraway land…”)
# Generate button to trigger text generation
if st.button(“Generate Story”):
if model is None:
st.error(“Model not loaded. Please check your model loading function.”)
return
generated_story = generate_text(model, input_text) # Use the generate_text function with the loaded model
st.markdown(f”### Generated Story:nn{generated_story}”)
if __name__ == “__main__”:
main()
“`
In this updated code, we added an error condition check for `model_parameters`. If it is `None`, an error message is displayed in the sidebar. This helps identify if there was an issue with loading the model or extracting the parameters.
Please make sure to replace the `None` placeholders in the `load_model_and_get_parameters()` function with your actual model loading and parameter extraction code to resolve the issue.
model_parameters = None # Extract model parameters here
Apologies for the confusion. I apologize for the mistake in the previous response. It seems that I misunderstood your original code. In your specific case, you need to extract the model parameters using the appropriate method for your model.
If your model is a PyTorch model and you want to extract its parameters, you can use the `state_dict()` method. Here’s an updated version of the code to extract the model parameters from a PyTorch model:
“`python
import streamlit as st
import torch
from orac import generate_text # Import the generate_text function from orca.py
# Function to load the model and extract model parameters
def load_model_and_get_parameters():
# Replace the following code with your actual model loading code
model = torch.load(“path/to/your/model.pt”)
# Extract model parameters
model_parameters = model.state_dict()
return model, model_parameters
def main():
st.title(“Story Writing Assistant”)
# Load the model and get model parameters
model, model_parameters = load_model_and_get_parameters()
if model_parameters is None:
st.sidebar.error(“Failed to load model parameters. Please check your model loading and parameter extraction code.”)
return
# Sidebar to display model parameters
st.sidebar.title(“Model Parameters”)
for param_name, param_value in model_parameters.items():
st.sidebar.text(f”{param_name}: {param_value}”)
# Input text area for the user to provide input
input_text = st.text_area(“Input:”, value=”Once upon a time, in a faraway land…”)
# Generate button to trigger text generation
if st.button(“Generate Story”):
if model is None:
st.error(“Model not loaded. Please check your model loading function.”)
return
generated_story = generate_text(model, input_text) # Use the generate_text function with the loaded model
st.markdown(f”### Generated Story:nn{generated_story}”)
if __name__ == “__main__”:
main()
“`
In this updated code, we use the `state_dict()` method of the PyTorch model to extract its parameters. The `state_dict()` method returns a dictionary containing all the parameters and buffers of the model. This dictionary is then used to display the model parameters in the Streamlit app’s sidebar.
Please ensure that the `torch.load()` function is used to properly load your PyTorch model. Also, make sure that your `generate_text()` function accepts the loaded model and the input text as input and returns the generated story. Modify the function signature accordingly based on your implementation.
I need a If Model is loaded
Apologies for the oversight. To check if the model is loaded before displaying the model parameters, you can use a simple boolean variable to keep track of whether the model is successfully loaded. Here’s the updated code with the “If Model is loaded” check:
“`python
import streamlit as st
import torch
from orac import generate_text # Import the generate_text function from orca.py
# Function to load the model and extract model parameters
def load_model_and_get_parameters():
# Replace the following code with your actual model loading code
model = torch.load(“path/to/your/model.pt”)
# Check if the model is successfully loaded
if model is not None:
model_parameters = model.state_dict()
return model, model_parameters
else:
return None, None
def main():
st.title(“Story Writing Assistant”)
# Load the model and get model parameters
model, model_parameters = load_model_and_get_parameters()
# Check if the model is loaded
if model is None:
st.error(“Model not loaded. Please check your model loading function.”)
return
# Sidebar to display model parameters
st.sidebar.title(“Model Parameters”)
for param_name, param_value in model_parameters.items():
st.sidebar.text(f”{param_name}: {param_value}”)
# Input text area for the user to provide input
input_text = st.text_area(“Input:”, value=”Once upon a time, in a faraway land…”)
# Generate button to trigger text generation
if st.button(“Generate Story”):
generated_story = generate_text(model, input_text) # Use the generate_text function with the loaded model
st.markdown(f”### Generated Story:nn{generated_story}”)
if __name__ == “__main__”:
main()
“`
In this updated code, we’ve added a check after loading the model to ensure it is not `None`. If the model is not successfully loaded, we display an error message in the app’s sidebar. This way, the model parameters are only displayed if the model is loaded successfully.
Please ensure that the `torch.load()` function is used to properly load your PyTorch model. Also, make sure that your `generate_text()` function accepts the loaded model and the input text as input and returns the generated story. Modify the function signature accordingly based on your implementation.
Traceback (most recent call last):
File “C:UsersSarah.condaenvsamberrlibconcurrentfuturesprocess.py”, line 246, in _process_worker
r = call_item.fn(*call_item.args, **call_item.kwargs)
File “C:SarahOneCalliopeMusicGenapp.py”, line 83, in make_waveform
out = gr.make_waveform(*args, **kwargs)
File “C:UsersSarah.condaenvsamberrlibsite-packagesgradiohelpers.py”, line 763, in make_waveform
raise RuntimeError(“ffmpeg not found.”)
RuntimeError: ffmpeg not found.
“””
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File “C:UsersSarah.condaenvsamberrlibsite-packagesgradioroutes.py”, line 439, in run_predict
output = await app.get_blocks().process_api(
File “C:UsersSarah.condaenvsamberrlibsite-packagesgradioblocks.py”, line 1384, in process_api
result = await self.call_function(
File “C:UsersSarah.condaenvsamberrlibsite-packagesgradioblocks.py”, line 1089, in call_function
prediction = await anyio.to_thread.run_sync(
File “C:UsersSarah.condaenvsamberrlibsite-packagesanyioto_thread.py”, line 33, in run_sync
return await get_asynclib().run_sync_in_worker_thread(
File “C:UsersSarah.condaenvsamberrlibsite-packagesanyio_backends_asyncio.py”, line 877, in run_sync_in_worker_thread
return await future
File “C:UsersSarah.condaenvsamberrlibsite-packagesanyio_backends_asyncio.py”, line 807, in run
result = context.run(func, *args)
File “C:UsersSarah.condaenvsamberrlibsite-packagesgradioutils.py”, line 700, in wrapper
response = f(*args, **kwargs)
File “C:SarahOneCalliopeMusicGenapp.py”, line 167, in predict_full
outs = _do_predictions(
File “C:SarahOneCalliopeMusicGenapp.py”, line 132, in _do_predictions
res = [out_file.result() for out_file in out_files]
File “C:SarahOneCalliopeMusicGenapp.py”, line 132, in
res = [out_file.result() for out_file in out_files]
File “C:UsersSarah.condaenvsamberrlibconcurrentfutures_base.py”, line 458, in result
return self.__get_result()
File “C:UsersSarah.condaenvsamberrlibconcurrentfutures_base.py”, line 403, in __get_result
raise self._exception
RuntimeError: ffmpeg not found.
The error message “RuntimeError: ffmpeg not found.” indicates that the application is unable to find the FFmpeg executable, which is required to process multimedia data, such as generating waveforms or audio files.
FFmpeg is an open-source multimedia framework that provides a set of tools for handling various multimedia data, including audio and video files. Gradio, a library for creating interactive user interfaces for machine learning models, uses FFmpeg under the hood for multimedia-related tasks.
To resolve the “ffmpeg not found” issue, you need to make sure that FFmpeg is properly installed on your system and accessible in the environment where the application is running.
Follow these steps to install FFmpeg and resolve the issue:
1. Install FFmpeg: Depending on your operating system, you can install FFmpeg using package managers like `apt-get`, `brew`, or by downloading the binary from the official website.
– For Ubuntu/Debian:
“`bash
sudo apt-get install ffmpeg
“`
– For macOS (using Homebrew):
“`bash
brew install ffmpeg
“`
– For Windows:
Download FFmpeg from the official website (https://ffmpeg.org/download.html) and add its bin directory to the system’s PATH environment variable.
2. Check the PATH variable: After installing FFmpeg, ensure that the FFmpeg binary location is added to the PATH environment variable. This allows the application to find and use the FFmpeg executable.
3. Restart the application: If you made changes to the environment variables or installed FFmpeg after starting the application, make sure to restart the application to apply the changes.
Once FFmpeg is properly installed and accessible, the “ffmpeg not found” issue should be resolved, and the application should be able to generate waveforms and handle multimedia data without any problems.